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ABSTRACT

The purpose of this document is to present the results of
comparisons of the solar flux models. (The wavelength A =
10.7 cm radio flux is the best indicator of the strength of
the ionizing radiations such as solar ultraviolet and x-ray
emissions that directly affect the atmospheric density
thereby changing the orbit lifetime of satellites. Thus,
accurate forecasting of solar flux F10.7 is crucial for
orbit determination of spacecrafts.) The measured solar
flux recorded by National Oceanic and Atmospheric Admini-
stration (NOAA) is compared against the forecasts made by
Schatten, Marshall Space Flight Center (MSFC), and NOAA it-
self. This document also discusses the possibility of a
combined linear, unbiased minimum-variance estimation that
properly combines all three models into one that minimizes
the variance. All the physics inherent in each model are
combined. This is considered to be the dead-end statistical
approach to solar flux forecasting before any nonlinear cha-

otic approach.

The research for this document was completed in December 1990.
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SECTION 1 - TINTRODUCTION

This document is the first part of a sequence of preliminary
studies of solar flux observed at the wavelength \ =

10.7 cm range. The sequence starts with comparisons of dif-
ferent solar flux models and gradually leads to a critical
stochastic approach, which further produces a geometric
approach to the prediction of chaotic solar flux time series.

The analysis in this first sequence is based on the avail-
able forecasts by Schatten (at Goddard Space Flight Center
(GSFC)) (Reference 1), Marshall Space Flight Center (MSFC)
(Reference 2), and National Oceanic and Atmospheric Admini-
stration (NOAA) (Reference 3). The comparisons are made
against actual observed values that are collected by NOAA

(Reference 3).

The observable radio spectrum extends from 1 centimeter (cm)
to 10 meters (m). Like the optical spectrum, the radio
spectrum is limited on its short wavelength end by absorp-
tion in the Earth's atmosphere (by molecules of oxygen and
water vapor). On the long wavelength end, the lower atmos-
phere is always transparent, even on cloudy days. But a
high layer, called the ionosphere, begins to interfere at
around X = 10 m (References 4 and 5).

The radio waves are radiated by fast-moving electrons in the
highly ionized gases of the outer solar atmosphere. Ionized
gases, which are fully transparent to visible light, how-
ever, may be opaque to radio waves at certain wavelengths.
The opacity depends on the density of ionized gas. In the
solar chromosphere, where density is high, the gases are
completely opaque to meter wavelengths; only the centimeter
waves can escape the Sun to reach the Earth. The Sun that
is observed is only the visible Sun; it appears larger in
the radio region (that is, the appearance dimension is pro-

portional to the wavelength).
1-1
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There is a strong correlation between sunspots and the solar

flux FlO 7
comes from limited areas of the Sun where there are active

because probably most of the enhanced radiation

sunspots. The activity depends on wavelength of radiated
solar flux. For waves shorter than 3 cm, the intensity is
steady. From 3 to 60 cm, often called decimeter range, the
intensity shows occasional short-lived increases. These
tend to last for a few minutes. The decimeter intensity
also shows a slowly varying component that tends to exhibit
a 27-day period associated with solar rotation (Reference 6)
and rises from the vicinity of active sunspot regions.

Large sporadic outbursts, lasting for minutes, occur often
in association with the bigger solar flares. A millionfold
increase in intensity within a few seconds has been observed.
(This will be studied as a part of the sequence of the solar
flux analysis by identifying the abrupt changes as one of
seven Thom's "elementary catastrophes.") (See Section 5 for

recommendations.)

It is necessary to study solar flux and accurately forecast
it to perform accurate orbit determination for a spacecraft.
The orbit lifetime is a function of atmospheric drag force;
this force is a function of atmospheric density, which it-

self is a function of solar flux.

Section 2 is devoted mostly to graphical analysis of solar
flux data. Section 3 describes the statistical techniques
to compare different forecasting models by confidence inter-
val methods. Section 4 introduces a linear, unbiased
minimum-variance estimation and combines three important
models into one. Section 5 is devoted to conclusions and

recommendations for future investigations.
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' SECTION 2 - SOLAR FLUX FlO 7 PREDICTION

2.1 MATHEMATICAL PERSPECTIVES

For satellite orbit lifetime prediction, one has to evaluate
the drag force that continually results in satellite orbit
decay. By applying the fundamental principles of fluid
mechanics, the drag force is written in the following form:

Fl =2 pvic,a (2-1)

where p is the atmospheric density, which is a complicated
function of solar flux in different density models of the
atmosphere. The velocity of the spacecraft is indicated by
Vv, and the other variables are properties of the space-
craft. These properties are drag coefficient Cd and scat-

tering cross section A.

It is very clear from the above equation that, given the
drag coefficient Cd and the scattering cross section A,

one can easily calculate the drag force [F| if the den-

sity of the atmosphere is known. Since the atmospheric den-
sity is sensitive to solar activity, most of the density
models are complicated functions of solar flux. The motiva-
tion for studying solar flux prediction models (other than
solar astronomy) is the accurate satellite orbit lifetime
prediction.

2.2 GRAPHICAL ANALYSIS OF DATA

The first part of this study compares Schatten solar flux
forecasts with National Oceanic and Atmospheric Administra-
tion (NOAA) actual solar flux values. Schatten predictions
are modified inconsistently, but at least once every

3 months. NOAA also forecasts short-term predictions that
are modified consistently every week. Schatten's

2-1
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latest values were distributed on September 1, 1990, which
includes long-term predictions starting from September 1990
to September 2008. His next latest predictions were dis-
tributed on May 25, 1990, which includes predictions start-
ing May 1990 to August 1990 and on to April 2012. Therefore
his May 25 version, which includes May, June, July, and
August 1990 predictions, is by far the best he could do.
Thus this analysis was done on his best predictions (May,
June, July, and August 1990).

As seen from the graphs in Figures 2-1 to 2-10, the 30-day
mean of the actual (NOAA) values are always less than

+2 sigma value of Schatten and in most cases are even
smaller than Schatten (mean). They are closer to -2 sigma
value or even smaller than that. This may mean that the
mission analysis is being too conservative by using +2 sigma

value consistently.

2.3 DESCRIPTION OF GRAPHS ~—

Figures 2-1 to 2-10 present the actual solar flux values and
different forecasts for the months of May, June, July, and
August 1990. The forecasts are the best updates for those
months. Figures 2-11 to 2-14 present the actual solar flux
values and their different averages and different forecasts
for a period of 2 years (October 15, 1988 to September 17,
1990). The actual data are daily values, and the long-term
prediction models (Schatten and MSFC) are monthly values.
Figures 2-15 and 2-16 are the confidence intervals for
Schatten and MSFC forecasts, the nominal and the +20, re-
spectively. Figures 2-17 to 2-19 are the actual solar flux
values and their averages for three different timespans.

The statistical analysis performed to get the confidence
intervals is discussed in Section 3. It should be noted
that all the units for the solar flux values are in units of
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actual(NOAA)

Data from "Science Data" *
300

200 A

0 10 20 " 30 40
MAY 1990

* Science data is a data file with its data printed by
running a cricket graph on the Macintosh.

actual (NOAA)
Schatten mean
Schatten -2¢
Schatten +2¢

Figure 2-1. Plot of Solar Flux Values and Schatten

Nominal, +2 Sigma, and -2 Sigma Pre-

dictions (May 1990)
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Data from "solar flux comparison"
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Figure 2-4. Plot of Solar Flux Values Minus the Mean
Value Normalized by Standard Deviation
(May 1990)
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Schatten Nominal Confidence Interval(95%)
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Interval and the Average of the Actual
Solar Flux Values
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Schatten(+2Sigm) Confidence Interval(95%)
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g

watt/mZ/Hz x 10722

the horizontal axis is time in modified Julian date.

for the range A = 10.7 cm wavelength, and

In order to compare forecast models of solar flux, one can
compare the forecasts of solar flux <F10.7) made for the
timespan that the actual solar flux values are available.
Every forecast will result in an interval (with a certain
percentage of confidence). The actual population mean of
data will fall within that confidence interval. This inter-
val can be calculated for each forecast model. To compare
forecast models, the question is whether the confidence in-
terval encloses the population mean of the actual solar flux
values or not. If it does, 95.5 percent of the time the
predicted value is within the confidence interval; thus, it
is a good forecast. The mathematical analysis of this pro-

cedure is presented in the next sections.

S
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SECTION 3 - STATISTICAL ANALYSIS

3.1 CHECK OF A HYPOTHESIS

Sample values are often used as estimators for parameters of
random variables. However, these procedures result only in
point estimates for a parameter of interest; no indication
is provided about how closely a sample value estimates the
parameter. A more meaningful procedure for estimating
parameters of random variables involves the estimation of an
interval, as opposed to a single point value, which will
include the parameter being estimated with a known degree of
uncertainty. For example, consider the case where the sam-
ple mean x computed from N independent observations of a
random variable x is being used as an estimator for the mean
value My It is usually more desirable to estimate u

in terms of some interval d, such as X + d, where there is a
specified uncertainty that My falls within that interval.
Such intervals can be established if the sampling distribu-
tion of the estimator in question is known (Reference 7).

It can be shown that probability statements can be made con-
cerning the value of a sample mean X as follows.

(x - p) VN

prob zl—(a/z) < o, < Zyso| = l - « (3-1)
_ T, Zy

prob | x > Jﬁ + M = a (3-2)
N

where X = sample mean, He = population mean, N = number
of observations, O = sample standard deviation, d =
uncertainty length, « = probability measure, and z, =

desired percentage of confidence.
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As the sample size N becomes large, the sampling distribu-
tion of the sample mean X approaches a normal distribution
regardless of the distribution of the original variable x.

For a sample, the probability statement would be either 1 or

0, i.e.,

(x - u) VN i [o

z < < z (3-3)
1-(a/2) o a/2 (1

prob

As the value a becomes small (as the interval between

and z becomes wide), the probability is

Z21-(ar2) a/2
more likely to be unity rather than zero. 1In slightly dif-
ferent terms, if many different samples were repeatedly col-
lected and a value X were computed for each sample, one

would expect
‘O
prob [ 1 = . (3-4)

to fall within the noted interval for about l-a of the
samples. In this context a statement can be made about an

interval within which one would expect to find the quantity

(x - u) VN

g
X

(3-5)

with a small degree of uncertainty. Such a statement is
called a confidence statement. The interval associated with
the confidence statement is called a confidence interval.
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For the case of the mean value estimate, a confidence inter-
val can be established for the mean value My based upon
the sample value X by rearranging terms in the previous

equation as follows:

_ o_ 2z _ o_ z
5 - X_a/2 Sp, < x o+ X "asf2 (3-6)
JN J/N

3.2 CHI-SQUARE DISTRIBUTION

For variance ci based on the sample variance 52 for
a sample size of N = 31, one would use chi-square distribu-

tion x2
n 52 2 n 52
x2 < O < ;5—————— n=N-1 (3-7)
n;a/2 n;l-as/2
2 2
_Elgi___ < °§ < _Eﬁgi___ n=31-1=30
x30;0'./2 xn;l—cx./Z

(3-8)

From a standard statistical table called, "Percentage Points
of Chi-Square Distribution" (Reference B) the value of

2 .
xn;a/Z given a can be found.

For the value of a = 0.10, 1 - a/2 = 0.95, and a/2 = 0.05,
2 2
X3O;a/2 = 43.77 and X30;1-a/2 = 18.49.

So the interval reduces to

2

[0.6854s2 < ol < 1.622s2] (3-9)

Calculate the sample mean x and the sample variance 52 to
find both intervals.
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SECTION 4 - LINEAR, UNBIASED MINIMUM-VARIANCE
ESTIMATION (LUMVE)

Schatten predictions are now adopted by GSFC because they
apparently did a good job at some periods of time. But the
conclusion from the data for the past 2 years is that MSFC
predictions were closer to the actual solar flux values.
This conclusion shows that it is not possible to compare the
accuracy of two forecasting models (which use stochastic
methods) when they try to model a time series that is inher-
ently chaotic (existence of a structure in data). Therefore
the best method is to combine all the models into one. This
method is investigated in this section under linear, un-
biased minimum-variance estimation (LUMVE). In this method,
the three solar forecasting models--NOaAA, MSFC, and Schatten
predictions--are combined into one that minimizes the vari-

ance.

4.1 MATHEMATICAL FORMULATION

The LUMVE ensures that the variance of the combined solar
flux predictions is the smallest that can be achieved for
any linear, unbiased combination of the individual predic-
tions. This method was used because it was demonstrated
that MSFC predictions were closer to the actual solar flux
than Schatten's for the past 2 years.

Solar flux is an inherently unpredictable phenomenon, and
stochastic methods used by Schatten, MSFC, and NOAA cannot
produce good predictions. Therefore, the dead-end approach
before an analytic (not stochastic) nonlinear, chaotic ap-
proach is the linear, unbiased minimum-variance approach
(References 9 and 10).

Let
on = standard deviation of NOAA prediction
Om = standard deviation of MSFC prediction
oy = standard deviation of Schatten prediction

4-1
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Consider a linear combination of the three flux predictions.

Using normalized coefficients

m s_s (a-1)

where bn, bm’ and bS are coefficients for NOAA, MSFC,

and Schatten forecast of solar flux fn' fm' and fs’

respectively.
Define
bn
8 *b_ +b_+ b (4-2)
n s
bm
a_ = (4-3)
m bn + bm + bs
b
a_ = = (4-4)
s bn + bm + bs
thus ~
£ = anfn + amfm + asfS (4-5)

Now the problem is to select values of a,s A, and ag
that will yield the best £ (the closest value to the mean of

the actual data).

~
The variance of f is

V(?) = aioi + aici + aécg + covariance terms
W
0 for independent predic-
~ tions
(4-6)
4-2
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By imposing E(E) = f (where f is the desired actual mean),

and forcing the parameters

E(f) = E(f ) = E(f_) = £ (4-7)

which is a renormalization technique. Then,

E(E) = a E(f,) + a E(f) + a E(f) (4-8)

and
f = anf + amf + asf (4-9)
1 = an tap 4+ aS {(4-10)

Equation (4-6) then becomes

V(?) = a2 02 + a; oi + (1 - a, - am)z 02

s (4-11)

n n

or

A
L) _ o (4-13)
a
then a_[o7 + o + a 02 =0 and
n m s !



= 0 (4-14)

2 2 2y _ 2,
then an(os) + am (o + os) = o therefore

o2 or2
_ m s
°n = 02 02 + 02 02 + 02 02 (4-1%)
n m S m s
2 2
%n s
°m = 02 02 + 02 02 + 02 02 (4-18)
n - m s m s
2 2
°2 %m
%s ~ 02 02 + 02 02 + 02 02 (4-17
n "m n s m °s
By dividing by o 02 02
m s
l/o2 w
a_ = > = o (4-18)
D 962 ¢ 1702 + 1702 Op * Op 0y
n m S
2
. . l/om _ wm (4-19)
m 2 2 2T W+ o+ w -
l/on + l/cm + l/cS n m S
and
l/og ws
a_. = = (4-20)
S 2 2 2 W+ W+ W
l/on + l/cm + l/cS n m S
4-4
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where

® _1
n 02
n
w = 1l
m - o2
m
(4-21)
w = 1
s 2
Is
. wnfn + wmfm + wsfs
w,o+ W+ Wy

This approach requires only the ratios of the coefficients
(an, a as) and not the actual parameters. See Fig-

ure 4-1 for calculations of these parameters. The variances
are calculated on the PC (IBM AT compatible) using the

Quattro Pro program.

Can the same coefficients be used in the future or do these
coefficients vary with time? 1If they vary in time are the
variations predictable or not? Figures 4-1 through 4-10
show that these coefficients evolve in time in a predictable
fashion. The reason they are predictable is that all the
variations are already in the flux values and their adjust
m’ s do not vary violently and are
predictable (Figures 4-1 through 4-10).

4.2 GRAPHICAL ANALYSIS OF DATA

The calculations of the required parameters in LUMVE pre-

ment coefficients a ., a

sented in the previous section is performed here. The inter-

mediate coefficients——an, an’

Equations (4-15) through (4-21) and presented in Figqure 4-1.

and as——are calculated from
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Predicted Flux
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Figure 4-2. Predicted Flux by NOAA, MSFC, Schatten
(Nominals) and the Result of Linear,
Unbiased Minimum-Variance Estimation
(Time Evolution of the Coefficients
an, ap, and ag-—-Running Procedure)
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Flux values predicted
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Figure 4-4. Plot of the Predicted Flux by NOAA, MSFC,
Schatten (Nominal) and Result of Linear,
Unbiased Minimum-Variance Estimation
(Time Evolution of the Coefficients
an, ap, and ag--Partitioned
Procedure)
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Figure 4-6. Plot of the Actual Solar Flux Values,
Schatten, and MSFC Predictions With
30-Day Running Average and 30-Day
Partitioned Average
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Figure 4-7. Plot of the Actual Solar Flux Values,

Schatten, MSFC Predictions, and
81-Day Average With 30-Day Running
Average and 30-Day Partitioned Average
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Figure 4-8. Plot of the Actual Solar Flux Values,
Schatten, and MSFC Predictions (30-Day
Running Average; 30-Day Partitioned
Average; and Linear, Unbiased
Minimum-Variance Estimation by 6-Month
Partitioned Procedure)
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Finally the combined flux is calculated from Equation (4-21).
Note that these equations require variances of NOAA, MSFC,
and Schatten data that had been calculated using the Quattro

Pro program.

The time evolutions of a,s Ap and ag are presented in
Figures 4-2 through 4-4, which indicate that their varia-
tions are not violent and are predictable in a sense. Fig-
ures 4-5 through 4-8 present the actual solar flux values
for a period of 2 years with MSFC and Schatten predictions
and different kinds of averages, so that one can clearly see
that MSFC predictions are closer to the actual values than
Schatten predictions. Figure 4-9 presents the combined flux
values, which are better than all the other models, because
it apparently has all the inherent physics of the individual
models built into it by the proper coefficients (an, a
and as). Figure 4-10 presents the normalized deviations
of the predictions by individual models from the 30-day
average of the actual solar flux values. It is clear from
this graph that the combined solar flux prediction model
varies within 20 percent of the actual values, whereas the
other individual prediction models show variations much
larger than 20 percent from the actual values.

6176

s



ECTION 5 -~ NCLUSIONS AND RECOMMENDATIONS

The statistical analysis using confidence intervals reveals
that one cannot draw a general conclusion about which solar
flux forecast model is better than the others among
Schatten, NOAA, and MSFC. This is due to the fact that
these models assume stochasticity (structurally random) in
solar flux time series, which is chaotic (existence of an

underlying structure in data).

Before employing the nonlinear, chaotic approach that will
follow as the second sequence of the analysis (to be pub-
lished in a different document), a combined LUMVE has been
developed that properly combines all three models into one
that minimizes the variance. All the physics inherent in

each model are combined.

In the second part of these studies, solar flux as a chaotic
time series will be studied and a particular route through
which the dynamical time series becomes chaotic will be
identified. The third part of the sequence is a critical
stochastic approach to solar flux. 1In this part solar flux
is studied through model identification, estimation,
fitting, diagnostic checking, and mathematical forecasting
for solar flux chaotic data.

The following future investigations are recommended:

' A Box-Jenkins type approach to solar flux time
series model identification, estimation, fitting, diagnostic
checking, and forecasting of solar flux. This is a method
to classify the solar flux time series as one of the
presently known models (moving average (MA) model, auto
regressive (AR) model, and mixed auto regressive moving
average (ARMA) model). Once the classification is made,
proper forecastings seem possible.
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° Chaotic approcach to solar flux prediction. Since
solar flux is shown to be chaotic, this approach would allow
for the construction of an iterative manifold that can re-
construct the solar flux time series. To do this a sequence

of studies should be performed such as

- Finding Lyapunov spectrum from solar flux time

series (Reference 11)

- Forming attractors from solar flux time series
and nonlinear signal processing using Neural
Net '

- Extracting self similarity character and
fractal structures from solar flux time series
and modeling abrupt changes with Thom's ele-

mentary catastrophes (Reference 12)
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